## Impact of inclined plane's angle of inclination on acceleration Interdisciplinary project - experiment

Magdalena Kseniak

## What did I need for the experiment?

- An air track set
  - an air track with an air pump
  - a glider
- A piece of sponge to stop the glider and prevent it from crushing

#### For measurement:

- Angle: a mobile phone with "Angle" app with 1° uncertainty
- Time: a photogate timer system with 1 millisecond uncertainty
- Distance: scale on the air track with 1 millimetre uncertainty





### Experiment **Steps**

- 1. Preparing the equipment, attaching the pump to the air track and connecting photogates to the timer
- 2. Inclining the air track and measuring angle
- 3. Turning on the timer and placing the glider on the track
- 4. Letting go of the glider and stopping it with a sponge after it goes past both photogates
- 5. Reading and writing down the time
- 6. Repeating with various angles

# Results of measurement

| Angle [°] | Time [ms] | Time [s] |
|-----------|-----------|----------|
| 8         | 385       | 0,385    |
| 13        | 311       | 0,311    |
| 15        | 289       | 0,289    |
| 19,6      | 250       | 0,25     |
| 23,5      | 230       | 0,23     |
| 27        | 222       | 0,222    |
| 37        | 190       | 0,19     |
| 41        | 181       | 0,181    |
| 60        | 158       | 0,158    |

# Calculations

#### Methods of calculation **Calculating speed and acceleration**

## The formula I intended to use: $a = 2s/t^{2}$

s - distance between the two photogates which is 0,3 m

The tool I have used for calculation is Excel.



I made a significant mistake during the experiment. I hadn't realised how important it was until I made the calculations and noticed that in some cases the acceleration is larger than gravitational acceleration, which is physically impossible.

The reason behind this was that I I left space between the first photogate and the glider when I let it go, while I should have put the glider just by the photogate. The result of this mistake was that the glider elaborated speed before it crossed the sensor.

## Solution to the problem

 $mgh = mv^{2}/2$  $v_0 = \sqrt{(2gh)}$  $h = sina * s_a$  $v_{d} = \sqrt{2g^* \sin \alpha * s_d}$ 

$$a = 2s/t^2 - 2v_o/t$$

 $a = 2s/t^2 - 2 [\sqrt{2g^* \sin \alpha * s}] / t$ 



In order to avoid repeating the experiment, I used the potential energy formula and transformed it:

s is the distance I left between the first sensor and the glider and it equals 16,4 cm, so it is 0,164 m

| angle | sinus  | 2g [m/s²] | s <sub>°</sub> [m] | v <sub>。</sub> [m/s] | time [s] | t2       | 2s [m] | а           |
|-------|--------|-----------|--------------------|----------------------|----------|----------|--------|-------------|
| 0     | 0      | 19,62     | 0,164              | 0                    | 0        | 0        | 0,6    | 0           |
| 8     | 0,1392 | 19,62     | 0,164              | 0,669254104          | 0,385    | 0,148225 | 0,6    | 0,571255455 |
| 13    | 0,225  | 19,62     | 0,164              | 0,850868968          | 0,311    | 0,096721 | 0,6    | 0,731583649 |
| 15    | 0,2588 | 19,62     | 0,164              | 0,91254347           | 0,289    | 0,083521 | 0,6    | 0,868642312 |
| 19,6  | 0,342  | 19,62     | 0,164              | 1,049021716          | 0,25     | 0,0625   | 0,6    | 1,207826274 |
| 23,5  | 0,4067 | 19,62     | 0,164              | 1,14395387           | 0,23     | 0,0529   | 0,6    | 1,394730056 |
| 27    | 0,454  | 19,62     | 0,164              | 1,208646648          | 0,222    | 0,049284 | 0,6    | 1,285627957 |
| 37    | 0,6018 | 19,62     | 0,164              | 1,39154584           | 0,19     | 0,0361   | 0,6    | 1,972647671 |
| 41    | 0,6561 | 19,62     | 0,164              | 1,452969321          | 0,181    | 0,032761 | 0,6    | 2,25954964  |
| 60    | 0,866  | 19,62     | 0,164              | 1,669284541          | 0,158    | 0,024964 | 0,6    | 2,90442577  |

#### Impact of angle of inclination on acceleration



Conclusion: acceleration increases as rake angle gets larger. I assume it is going to rise until it reaches 9,81 m/s<sup>2</sup>, which is gravitational acceleration.



Thank you for your attention